ISO 5832-2 Unalloyed Titanium for Surgical Implant

  • Grade 1 ELI, Grade 1, Grade 2, Grade 3, Grade 4A and 4B
  • Excellent Biocompatibility
  • Corrosion Resistance
  • Lower Strength Compared to Alloys
  • Good Ductility and Formability
  • Lower Modulus of Elasticity

Features

ISO 5832-2 Unalloyed Titanium Bar for Surgical Implant

Chemical Composition (wt.%)
Element Grade 1 ELI Grade 1 Grade 2 Grade 3 Grades 4A and 4B
Nitrogen 0.012 0.03 0.03 0.05 0.05
Carbon 0.03 0.1 0.1 0.1 0.1
Hydrogen 0.0125 0.0125 0.0125 0.0125 0.0125
Iron 0.1 0.2 0.3 0.3 0.5
Oxygen 0.1 0.18 0.25 0.35 0.4
Titanium Balance Balance Balance Balance Balance

Note: For billets, the maximum hydrogen content shall be 0.010 % (mass fraction) and for flat products for the maximum hydrogen content shall be 0.015 % (mass fraction).

Mechanical Properties
Grade Condition Tensile Strength (min. MPa) Proof Stress of non-proportional elongation (min. MPa) Percentage Elongation (min. %) Mandrel Diameter for Bend Test for Sheet and Strip (mm)
1 ELI Annealed 200 140 30 2 mm ≤ t < 5 mm: 3 t < 2 mm: 4
1 Annealed 240 170 24 2 mm ≤ t < 5 mm: 3 t < 2 mm: 4
2 Annealed 345 275 20 t ≥ 2 mm: 4
t < 2 mm: 5
3 Annealed 450 380 18 t ≥ 2 mm: 4
t < 2 mm: 5
4A Annealed 550 483 15 t ≥ 2 mm: 5
t < 2 mm: 6
4B Cold-worked 680 520 10 t ≥ 2 mm: 6
t < 2 mm: 6

Notes:

  • Tensile, yield, and bending requirements of the sheet shall apply to material taken both parallel and perpendicular to the direction of rolling.
  • Gauge length = 5.65√So, or 50 mm, where So is the original cross-sectional area, in square millimetres.
  • Ct = thickness of the sheet or strip.

Technical Specifications

Specification Value
Standard ISO 5832-2 Unalloyed Titanium Bar for Surgical Implants
Grade Grade 1 ELI, Grade 1, Grade 2, Grade 3, Grade 4A, Grade 4B
Type Alloy Bar, Sheet, Plate, Wire
Dimension Bar—Round bars and flats from 5.50 to 94.0 mm [0.218 to 3.70 in.] in diameter or thickness (other sizes or shapes by special order).
Sheet—Any product 0.188 in. (4.76 mm) and under in thickness and 24 in. (610 mm) or more in width.
Plate—Any product 5.50 up to 94.0 mm [0.218 to 3.70 in.] in thickness, with a width equal to or greater than five times the thickness.
Wire—Smaller than 0.218″ (5.5mm) in outer diameter.
Density 4.51g/cm³
Inspection Certificate EN 10204 Type 3.1 (Mill Test Certificate), EN 10204 Type 3.2 (Witness Testing or 3rd Party Inspection)
Tests Chemical Composition, Grain Size ISO 643/ASTM E112, Tensile Test ISO 6892-1, 105° Bending Test ISO 7438
Key Features

Excellent Biocompatibility: Unalloyed titanium boasts superior biocompatibility, meaning it is non-toxic and exhibits minimal interaction with surrounding tissues and fluids. This minimizes the risk of adverse reactions and ensures the implant’s long-term success within the body.
Corrosion Resistance: It demonstrates outstanding resistance to corrosion within the body’s physiological environment, preventing degradation and ensuring the implant’s longevity.
Lower Strength Compared to Alloys: While not as strong as titanium alloys like Ti6Al4V or Ti6Al7Nb, unalloyed titanium still offers sufficient strength for many implant applications, particularly those that do not experience high stress or load-bearing conditions.
Good Ductility and Formability: Unalloyed titanium exhibits good ductility and can be readily formed into various shapes and sizes required for different implant designs.
Lower Modulus of Elasticity: Compared to titanium alloys, unalloyed titanium has a lower modulus of elasticity, closer to the stiffness of natural bone. This helps reduce stress shielding and improve load transfer to the surrounding bone.

Packing

Packed in plywood boxes.

Application

Dental implants: These bars, sheets, and strips are frequently used as the base for dental prosthetics like crowns and bridges due to their excellent biocompatibility and osseointegration properties.
Abutments: Connect the implant to the prosthetic
Non-load-bearing or low-stress applications: These are used in situations where high strength is not a primary requirement, such as certain spinal implants, fracture fixation devices, and maxillofacial implants.
Pacemaker components: This material is employed in pacemaker casings and leads due to its biocompatibility and resistance to corrosion from bodily fluids.

Get A Quote


    captcha